RSN Fundraising Banner
The Debate Is Over: We Need to Start Sucking Carbon From the Air
Written by <a href="index.php?option=com_comprofiler&task=userProfile&user=26261"><span class="small">Nathanael Johnson, Grist</span></a>   
Wednesday, 31 October 2018 08:27

Johnson writes: "If we don’t suck carbon now, life will suck later. That’s the underlying theme of a report out Wednesday from the U.S. National Academy of Sciences."

A direct air capture project in Iceland. (photo: Melanie Stetson Freeman/The Christian Science Monitor/Getty Images)
A direct air capture project in Iceland. (photo: Melanie Stetson Freeman/The Christian Science Monitor/Getty Images)


The Debate Is Over: We Need to Start Sucking Carbon From the Air

By Nathanael Johnson, Grist

31 October 18

 

f we don’t suck carbon now, life will suck later. That’s the underlying theme of a report out Wednesday from the U.S. National Academy of Sciences. The 350-page paper looks at the prospects for carbon sucking — known to the fancy-talk types as “negative emissions technologies.”

We not only have to stop turning up the heat with carbon emissions, but also start turning down the thermostat with negative emissions technologies, according to the report.

The upshot? The United States should start spending billions to research negative emissions “as soon as practicable.”

Even before that research is complete, the Academy estimated that the world could start taking steps right away. Some 10 gigatons of carbon could be removed from the air each year — about a fifth of all emissions — simply by growing more trees and taking better care of soil.

As anyone reading Grist knows, temperatures are on track to soar past the limit (1.5 degrees Celsius of warming) that the global community has set to dodge the worst consequences of climate change. The NAS paper follows an alarming study from the United Nations’ scientific panel that called on the world to take all manner of solutions to curb warming.

What exactly are these technologies? The NAS report outlines a few. For starters, walls of fans sucking up air and removing carbon. Those are already up and running in Iceland and Switzerland; they’re just expensive to run. Cheaper methods rely on plants: Fostering mangroves and eelgrass along the coasts, allowing forests to regrow, and enriching farm soils.

Most of these methods would cost less than $20 per ton of carbon. That’s about what polluters are charged for carbon emissions in California and the European Union.

The researchers also studied sucking up carbon with plants, then burning those plants for energy and capturing the pollution, a practice known by the un-catchy acronym BECCS “bioenergy with carbon capture and sequestration.”

BECCS could suck up a lot of carbon, but scaling it would require burning whole forests and huge fields of crops. If we tried to snare 10 gigatons with BECCS, that would take the equivalent of 40 percent of global farmland. Erica Belmont, a professor of engineering at the University of Wyoming who worked on the report, said her team wanted to estimate how much could be done without risking hunger and habitat destruction that would come from turning any farms or forest into carbon-sucking a plantation.

Researchers also examined the possibility of transforming carbon into stone. That sounds like alchemy, but it’s happening naturally all the time: Minerals like calcium and magnesium bind with carbon in the air to form rocks such as calcite, magnesite, and dolomite. Of all the techniques laid out in the report, this one has the largest potential.

“You could remove all the carbon dioxide from the atmosphere many times over if you could bring the rocks to the atmosphere or the atmosphere to the rocks,” said Steve Pacala, the Princeton scientist who led the research for this report.

Arguments for developing negative-emission technologies have stirred up controversy in the past. Critics have said it gives polluters a pass, permitting them to continue business as usual. Better to stop putting ever more carbon into the atmosphere, first, then clean it up later.

But we’ve let carbon pollution rise so much that that this debate is out of date. “Later” has arrived.

Email This Page

e-max.it: your social media marketing partner
 

Comments   

A note of caution regarding our comment sections:

For months a stream of media reports have warned of coordinated propaganda efforts targeting political websites based in the U.S., particularly in the run-up to the 2016 presidential election.

We too were alarmed at the patterns we were, and still are, seeing. It is clear that the provocateurs are far more savvy, disciplined, and purposeful than anything we have ever experienced before.

It is also clear that we still have elements of the same activity in our article discussion forums at this time.

We have hosted and encouraged reader expression since the turn of the century. The comments of our readers are the most vibrant, best-used interactive feature at Reader Supported News. Accordingly, we are strongly resistant to interrupting those services.

It is, however, important to note that in all likelihood hardened operatives are attempting to shape the dialog our community seeks to engage in.

Adapt and overcome.

Marc Ash
Founder, Reader Supported News

 
+1 # Thinking 2018-10-31 13:28
It costs energy (often created with carbon emissions) to suck up carbon. The article didn't address if the carbon releases (and associated energy) to take up carbon might exceed the benefit.
Research and reports that don't consider the whole cycle are not helpful.
 
 
0 # LionMousePudding 2018-11-01 10:21
Turning CO2 into rocks sounds like a recipe to confirm Chicken Little's prediction!